报告人:王涛 上海交通大学博士生导师,国家优青
时间:4月13号(周四)下午15:00
腾讯会议号: 827-828-819
报告摘要:The goal of dimension reduction in regression is to reduce the dimension of the predictor space without loss of information on the regression. In many fields, the predictors of a response are count-valued, including species abundance in ecological studies, phrase tokens in text mining, and panel data in econometrics. In this talk, we review the dimension-reduction methodology in regression with count-valued predictors. We follow an inverse regression approach by modeling the conditional distribution of the predictors given the response, using the Poisson independence model and its generalizations. A new proposal is then discussed.
报告人简介:王涛博士,国家优青,上海交通大学长聘副教授,博士生导师;交大-耶鲁生物统计与数据科学联合中心研究员;国际统计学会Elected Member。研究方向为生物统计和高维数据统计推断,在JASA,JRSSB,Biometrika,Genome Biology,Briefings in Bioinformatics,Bioinformatics等期刊发表论文五十余篇;主持国家自然科学基金面上项目和优秀青年科学基金项目等多项。