报告时间: 2021年12月8日上午10:00-11:30
腾讯会议号:908-763-654
报告题目: Large dimensional empirical likelihood
报告人:周望,新加坡国立大学终身教授
摘要:By adding two pseudo-observations to the original data set, we provethe asymptotic normality of the log empirical likelihood-ratio statistic whenthe sample size and the data dimension are comparable. In practice, we suggestusing the normalized F(p, n-p) distribution to approximate its distribution.Simulation results show excellent performance of this approximation.
个人简介:周望,新加坡国立大学终身教授,博士生导师。主要从事统计学的理论与应用研究,在高维数据估计、高维数据检验、数据降维、大维数据随机矩阵领域取得了重要的成果。迄今为止,在Annals of Statistics, Journal of American StatisticalAssociation, Journal of Royal Statistical Society(B),Biometrika, Bernoulli, Journal of Econometrics,Trans. Amer. Math.Soc.,Annals of Probability,Annals of Applied Probability等国际顶级期刊发表论文70余篇。2012年成为国际统计学会(ElectedMember of International Statistical Institute)当选成员。