报告题目:Oracally Efficient Estimation and Simultaneous Inference in Partially Linear Single-index Models for Longitudinal Data
报告时间:2019年6月20日下午15:00-16:30
报告地点:经管院335会议室
报告人:王所进教授
报告摘要:In this presentation, we discuss oracally efficient estimation and asymptotically accurate simultaneous confidence band (SCB) for the nonparametric link function in the partially linear single-index models for longitudinal data. The proposed procedure works for possibly unbalanced longitudinal data under general conditions. The link function estimator is shown to be oracally efficient in the sense that it is asymptotically equivalent in the order of one over root n to that with all true values of the parameters being known oracally. Furthermore, the asymptotic distribution of the maximal deviation between the estimator and the true link function is provided, and hence an SCB for the link function is constructed. Finite sample simulation studies are carried out which support our asymptotic theory. The proposed SCB is applied to analyze a CD4 data set.
报告人简介:现任美国德克萨斯A&M大学统计系终身教授,理学院副院长,被评为美国统计学会会士(ASA Fellow),国际统计研究院成员(ISI Member),国际数理统计研究院会士(IMS Fellow),研究兴趣包括半参数和非参数统计方法、缺失和错误测量数据分析、渐近理论、样本调查和应用统计学。在国际重要学术刊物上发表论文160余篇,同时在统计学科的研究中先后得到了美国国家科学基金会、国防部、国家卫生研究所、德州高级研究基金会等部门的高度重视和大力资助。曾任《Journal of Nonparametric Statistics》总主编(2007-2012),以及五个统计学国际期刊的副主编。担任浙江大学校友总会理事。获得了德克萨斯州农工大学的四个主要教学奖项,其中包括最负盛名的大学级教学杰出成就奖。